Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 323, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561750

RESUMO

BACKGROUND: MicroRNA (miRNA)-21-5p participates in various biological processes, including cancer and autoimmune diseases. However, its role in the development of fibrosis in the in vivo model of systemic sclerosis (SSc) has not been reported. This study investigated the effects of miRNA-21a-5p overexpression and inhibition on SSc fibrosis using a bleomycin-induced SSc mouse model. METHODS: A murine SSc model was induced by subcutaneously injecting 100 µg bleomycin dissolved in 0.9% NaCl into C57BL/6 mice daily for 5 weeks. On days 14, 21, and 28 from the start of bleomycin injection, 100 µg pre-miRNA-21a-5p or anti-miRNA-21a-5p in 1 mL saline was hydrodynamically injected into the mice. Fibrosis analysis was conducted in lung and skin tissues of SSc mice using hematoxylin and eosin as well as Masson's trichrome staining. Immunohistochemistry was used to examine the expression of inflammatory cytokines, phosphorylated signal transducer and activator of transcription-3 (STAT3) at Y705 or S727, and phosphatase and tensin homologue deleted on chromosome-10 (PTEN) in skin tissues of SSc mice. RESULTS: MiRNA-21a-5p overexpression promoted lung fibrosis in bleomycin-induced SSc mice, inducing infiltration of cells expressing TNF-α, IL-1ß, IL-6, or IL-17, along with STAT3 phosphorylated cells in the lesional skin. Conversely, anti-miRNA-21a-5p injection improved fibrosis in the lung and skin tissues of SSc mice, reducing the infiltration of cells secreting inflammatory cytokines in the skin tissue. In particular, it decreased STAT3-phosphorylated cell infiltration at Y705 and increased the infiltration of PTEN-expressing cells in the skin tissue of SSc mice. CONCLUSION: MiRNA-21a-5p promotes fibrosis in an in vivo murine SSc model, suggesting that its inhibition may be a therapeutic strategy for improving fibrosis in SSc.


Assuntos
MicroRNAs , Escleroderma Sistêmico , Animais , Camundongos , Bleomicina , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/induzido quimicamente , Pele/patologia
2.
Immunol Lett ; 263: 87-96, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37722567

RESUMO

Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid and choline, plays multiple roles in inflammation. We investigated the therapeutic effects of the newly developed PLD1 inhibitors A2998, A3000, and A3773 in vitro and in vivo rheumatoid arthritis (RA) model. A3373 reduced the levels of LPS-induced TNF-α, IL-6, and IgG in murine splenocytes in vitro. A3373 also decreased the levels of IFN-γ and IL-17 and the frequencies of Th1, Th17 cells and germinal-center B cells, in splenocytes in vitro. A3373 ameliorated the severity of collagen-induced arthritis (CIA) and suppressed infiltration of inflammatory cells into the joint tissues of mice with CIA compared with vehicle-treated mice. Moreover, A3373 prevented systemic bone demineralization in mice with CIA and suppressed osteoclast differentiation and the mRNA levels of osteoclastogenesis markers in vitro. These results suggest that A3373 has therapeutic potential for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Fosfolipase D , Camundongos , Animais , Osteoclastos , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Fosfolipase D/genética , Fosfolipase D/farmacologia , Fosfolipase D/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Diferenciação Celular , Citocinas/genética , Células Th17/patologia
3.
Mater Today Bio ; 20: 100648, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37214546

RESUMO

Nanofiber (NF) membranes have been highlighted as functional materials for biomedical applications owing to their high surface-to-volume ratios, high permeabilities, and extracellular matrix-like biomimetic structures. Because many in vitro platforms for biomedical applications are made of thermoplastic polymers (TP), a simple and leak-free method for bonding NF membranes onto TP platforms is essential. Here, we propose a facile but leak-free localized thermal bonding method for integrating 2D or 3D-structured NF membrane onto a TP supporting substrate while preserving the pristine nanofibrous structure of the membrane, based on localized preheating of the substrate. A methodology for determining the optimal preheating temperature was devised based on a numerical simulation model considering the melting temperature of the NF material and was experimentally validated by evaluating bonding stability and durability under cell culture conditions. The thermally-bonded interface between the NF membrane and TP substrate was maintained stably for 3 weeks allowing the successful construction of an intestinal barrier model. The applicability of the localized thermal bonding method was also demonstrated on various combinations of TP materials (e.g., polystyrene and polymethylmethacrylate) and geometries of the supporting substrate, including a culture insert and microfluidic chip. We expect the proposed localized thermal bonding method to contribute toward broadening and realizing the practical applications of functional NF membranes in various biomedical fields.

4.
ACS Nano ; 17(9): 8153-8166, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37068137

RESUMO

Blood-brain barrier (BBB) remains one of the critical challenges in developing neurological therapeutics. Short single-stranded DNA/RNA nucleotides forming a three-dimensional structure, called aptamers, have received increasing attention as BBB shuttles for efficient brain drug delivery owing to their practical advantages over Trojan horse antibodies or peptides. Aptamers are typically obtained by combinatorial chemical technology, termed Systemic Evolution of Ligands by EXponential Enrichment (SELEX), against purified targets, living cells, or animal models. However, identifying reliable BBB-penetrating aptamers that perform efficiently under human physiological conditions has been challenging because of the poor physiological relevance in the conventional SELEX process. Here, we report a human BBB shuttle aptamer (hBS) identified using a human microphysiological system (MPS)-based SELEX (MPS-SELEX) method. A two-channel MPS lined with human brain microvascular endothelial cells (BMECs) interfaced with astrocytes and pericytes, recapitulating high-level barrier function of in vivo BBB, was exploited as a screening platform. The MPS-SELEX procedure enabled robust function-based screening of the hBS candidates, which was not achievable in traditional in vitro BBB models. The identified aptamer (hBS01) through five-round of MPS-SELEX exhibited high capability to transport protein cargoes across the human BBB via clathrin-mediated endocytosis and enhanced uptake efficiency in BMECs and brain cells. The enhanced targeting specificity of hBS01 was further validated both in vitro and in vivo, confirming its powerful brain accumulation efficiency. These findings demonstrate that MPS-SELEX has potential in the discovery of aptamers with high target specificity that can be widely utilized to boost the development of drug delivery strategies.


Assuntos
Aptâmeros de Nucleotídeos , Animais , Humanos , Aptâmeros de Nucleotídeos/química , Células Endoteliais/metabolismo , Barreira Hematoencefálica/metabolismo , Sistemas Microfisiológicos , Técnica de Seleção de Aptâmeros/métodos , Ligantes
5.
Biomaterials ; 293: 121983, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36610323

RESUMO

The basement membrane (BM) of the blood-brain barrier (BBB), a thin extracellular matrix (ECM) sheet underneath the brain microvascular endothelial cells (BMECs), plays crucial roles in regulating the unique physiological barrier function of the BBB, which represents a major obstacle for brain drug delivery. Owing to the difficulty in mimicking the unique biophysical and chemical features of BM in in vitro systems, current in vitro BBB models have suffered from poor physiological relevance. Here, we describe a highly ameliorated human BBB model accomplished by an ultra-thin ECM hydrogel-based engineered basement membrane (nEBM), which is supported by a sparse electrospun nanofiber scaffold that offers in vivo BM-like microenvironment to BMECs. BBB model reconstituted on a nEBM recapitulates the physical barrier function of the in vivo human BBB through ECM mechano-response to physiological relevant stiffness (∼500 kPa) and exhibits high efflux pump activity. These features of the proposed BBB model enable modelling of ischemic stroke, reproducing the dynamic changes of BBB, immune cell infiltration, and drug response. Therefore, the proposed BBB model represents a powerful tool for predicting the BBB permeation of drugs and developing therapeutic strategies for brain diseases.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Humanos , Barreira Hematoencefálica/fisiologia , Células Endoteliais/fisiologia , Encéfalo/fisiologia , Células Cultivadas , Membrana Basal
6.
PLoS One ; 17(12): e0277692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36574392

RESUMO

Obesity is a medical term used to describe an over-accumulation of adipose tissue. It causes abnormal physiological and pathological processes in the body. Obesity is associated with systemic inflammation and abnormalities in immune cell function. Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, has been used as a therapeutic for the protection from mucosal damage. Our previous studies have demonstrated that rebamipide treatment regulates lipid metabolism and inflammation, leading to prevention of weight gain in high-fat diet mice. In this study, mice were put on a high calorie diet for 11 weeks while receiving injections of rebamipide. Rebamipide treatment reduced the body weight, liver weight and blood glucose levels compared to control mice and reduced both glucose and insulin resistance. Fat accumulation has been shown to cause pro-inflammatory activity in mice. Treatment with rebamipide decreased the prevalence of inflammatory cells such as Th2, Th17 and M1 macrophages and increased anti-inflammatory Treg and M2 macrophages in epididymal fat tissue. Additionally, rebamipide addition inhibited adipocyte differentiation in 3T3-L1 cell lines. Taken together, our study demonstrates that rebamipide treatment is a novel and effective method to prevent diet-induced obesity.


Assuntos
Resistência à Insulina , Quinolonas , Camundongos , Animais , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Obesidade/complicações , Quinolonas/farmacologia , Quinolonas/uso terapêutico , Quinolonas/metabolismo , Inflamação/metabolismo , Fenótipo , Dieta Hiperlipídica/efeitos adversos , Células 3T3-L1 , Camundongos Endogâmicos C57BL
7.
J Transl Med ; 20(1): 428, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36138477

RESUMO

BACKGROUND: Osteoarthritis (OA) is the most common type of degenerative arthritis and affects the entire joint, causing pain, joint inflammation, and cartilage damage. Various risk factors are implicated in causing OA, and in recent years, a lot of research and interest have been directed toward chronic low-grade inflammation in OA. Monocyte chemoattractant protein-1 (MCP-1; also called CCL2) acts through C-C chemokine receptor type 2 (CCR2) in monocytes and is a chemotactic factor of monocytes that plays an important role in the initiation of inflammation. The targeting of CCL2-CCR2 is being studied as part of various topics including the treatment of OA. METHODS: In this study, we evaluated the potential therapeutic effects the sCCR2 E3 gene may exert on OA. The effects of sCCR2 E3 were investigated in animal experiments consisting of intra-articular injection of sCCR2 E3 in a monosodium iodoacetate (MIA)-induced OA rat model. The effects after intra-articular injection of sCCR2 E3 (fusion protein encoding 20 amino acids of the E3 domain of the CCL2 receptor) in a monosodium iodoacetate-induced OA rat model were compared to those in rats treated with empty vector (mock treatment) and full-length sCCR2. RESULTS: Pain improved with expression of the sCCR2 gene. Improved bone resorption upon sCCR2 E3 gene activation was confirmed via bone analyses using micro-computed tomography. Histologic analyses showed that the sCCR2 E3 gene exerted protective effects against cartilage damage and anti-inflammatory effects on joints and the intestine. CONCLUSIONS: These results show that sCCR2 E3 therapy is effective in reducing pain severity, inhibiting cartilage destruction, and suppressing intestinal damage and inflammation. Thus, sCCR2 E3 may be a potential therapy for OA.


Assuntos
Cartilagem Articular , Osteoartrite , Aminoácidos/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Cartilagem/patologia , Cartilagem Articular/patologia , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Terapia Genética , Inflamação/metabolismo , Ácido Iodoacético/metabolismo , Ácido Iodoacético/toxicidade , Osteoartrite/diagnóstico por imagem , Osteoartrite/genética , Osteoartrite/terapia , Dor/patologia , Ratos , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de Quimiocinas/metabolismo , Microtomografia por Raio-X
8.
Immunol Lett ; 248: 62-69, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35732207

RESUMO

Sjögren syndrome (SS) is an autoimmune disease in which immune cells infiltrate the exocrine gland. Since SS is caused by a disorder of the immune system, treatments should regulate the immune response. Sphingosylphosphorylcholine (SPC) is a sphingolipid that mediates cellular signaling. In immune cells, SPC has several immunomodulatory functions. Accordingly, this study verifies the immunomodulatory ability and therapeutic effect of SPC in SS. To understand the function of SPC in SS, we treated SPC in female NOD/ShiJcl (NOD) mice. The mice were monitored for 10 weeks, and inflammation in the salivary glands was checked. After SPC treatment, we detected the expression of regulatory B (Breg) cells in mouse splenocytes and the level of salivary secretion-related genes in human submandibular gland (HSG) cells. Salivary flow rate was maintained in the SPC-treated group compared to the vehicle-treated group, and inflammation in the salivary gland tissues was relieved by SPC. SPC treatment in mouse cells and HSG cells enhanced Breg cells and salivary secretion markers, respectively. This study revealed that SPC can be considered as a new therapeutic agent against SS.


Assuntos
Linfócitos B Reguladores , Sialadenite , Síndrome de Sjogren , Animais , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos NOD , Fosforilcolina/análogos & derivados , Síndrome de Sjogren/tratamento farmacológico , Esfingosina/análogos & derivados
9.
Arthritis Rheumatol ; 74(7): 1211-1222, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35166061

RESUMO

OBJECTIVE: CR6-interacting factor 1 (CRIF1) is a nuclear transcriptional regulator and a mitochondrial inner membrane protein; however, its functions in B lymphocytes have been poorly defined. This study was undertaken to investigate the effects of CRIF1 on B cell metabolic regulation, cell function, and autoimmune diseases. METHODS: Using mice with B cell-specific deletion of CRIF1 (Crif1ΔCD19 mice), we assessed the relevance of CRIF1 function for lupus disease parameters, including anti-double-stranded DNA (anti-dsDNA), cytokines, and kidney pathology. RNA sequencing was performed on B cells from Crif1ΔCD19 mice. The phenotypic and metabolic changes in immune cells were evaluated in Crif1ΔCD19 mice. Roquinsan/+ mice crossed with Crif1ΔCD19 mice were monitored to assess the functionality of CRIF1-deficient B cells in lupus development. RESULTS: Crif1ΔCD19 mice showed an autoimmune lupus-like phenotype, including high levels of autoantibodies to dsDNA and severe lupus nephritis with increased mesangial hypercellularity. While loss of CRIF1 in B cells showed impaired mitochondrial oxidative function, CRIF1-deficient B cells promoted the production of interleukin-17 (IL-17) and IL-6 and was more potent in helping T cells develop into follicular helper T cells. In a mouse model of autoimmune lupus, depletion of CRIF1 in B cells exacerbated lupus severity, and CRIF1 overexpression prevented lupus development in roquinsan/san mice. CONCLUSION: These results demonstrated that CRIF1 negatively correlates with disease severity and that overexpression of CRIF1 ameliorates disease development. Our findings suggest that CRIF1 is essential for preventing lupus development by maintaining B cell self tolerance.


Assuntos
Proteínas de Ciclo Celular , Interleucina-17 , Interleucina-6 , Nefrite Lúpica , Células T Auxiliares Foliculares , Animais , Autoimunidade , Linfócitos B , Proteínas de Ciclo Celular/genética , Modelos Animais de Doenças , Deleção de Genes , Nefrite Lúpica/imunologia , Camundongos
10.
J Transl Med ; 20(1): 85, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148758

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a progressive systemic autoimmune disease that is characterized by infiltration of inflammatory cells into the hyperplastic synovial tissue, resulting in subsequent destruction of adjacent articular cartilage and bone. Methotrexate (MTX), the first conventional disease-modifying antirheumatic drug (DMARD), could alleviate articular damage in RA and is implicated in humoral and cellular immune responses. However, MTX has several side effects, so efficient delivery of low-dose MTX is important. METHODS: To investigate the efficacy of MTX-loaded nanoparticles (MTX-NPs) against experimental model of RA, free MTX or MTX-NPs were administered as subcutaneous route to mice with collagen-induced arthritis (CIA) at 3 weeks after CII immunization. The levels of inflammatory factors in tissues were determined by immunohistochemistry, confocal microscopy, real-time PCR, and flow cytometry. RESULTS: MTX-NPs ameliorated arthritic severity and joint destruction in collagen-induced arthritis (CIA) mice compared to free MTX-treated CIA mice. The levels of inflammatory cytokines, including interleukin (IL)-1ß, tumor necrosis factor-α, and vascular endothelial growth factor, were reduced in MTX-NPs-treated mice. Number of CD4 + IL-17 + cells decreased whereas the number of CD4 + CD25 + Foxp3 + cells increased in spleens from MTX- NPs-treated CIA mice compared to MTX-treated CIA mice. The frequency of CD19 + CD25 + Foxp3 + regulatory B cells increased in ex vivo splenocytes from MTX-loaded NPs-treated CIA mice compared to MTX-treated CIA mice. CONCLUSION: The results suggest that MTX-loaded NPs have therapeutic potential for RA.


Assuntos
Artrite Experimental , Doenças Autoimunes , Nanopartículas , Animais , Artrite Experimental/patologia , Interleucina-17 , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Camundongos , Linfócitos T Reguladores , Fator A de Crescimento do Endotélio Vascular
11.
PLoS One ; 17(1): e0262183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34986165

RESUMO

PURPOSE: Spondyloarthritis (SpA) is a systemic inflammatory arthritis mediated mainly by interleukin (IL)-17. The vitronectin-derived bioactive peptide, VnP-16, exerts an anti-osteoporotic effect via ß1 and αvß3 integrin signaling. SpA is associated with an increased risk of osteoporosis, and we investigated the effect of VnP-16 in mice with SpA. METHODS: SpA was induced by curdlan in SKG ZAP-70W163C mice, which were treated with vehicle, celecoxib, VnP-16, or VnP-16+celecoxib. The clinical score, arthritis score, spondylitis score, and proinflammatory cytokine expression of the spine were evaluated by immunohistochemical staining. Type 17 helper T cell (Th17) and regulatory T cell (Treg) differentiation in the spleen was evaluated by flow cytometry and in the spine by confocal staining. Splenocyte expression of signal transducer and activator of transcription (STAT) 3 and pSTAT3 was evaluated by in vitro Western blotting. RESULTS: The clinical score was significantly reduced in the VnP16+celecoxib group. The arthritis and spondylitis scores were significantly lower in the VnP-16 and VnP16+celecoxib groups than the vehicle group. In the spine, the levels of IL-1ß, IL-6, tumor necrosis factor-α, and IL-17 expression were reduced and Th17/Treg imbalance was regulated in the VnP-16 alone and VnP-16+celecoxib groups. Flow cytometry of splenocytes showed increased polarization of Tregs in the VnP-16+celecoxib group. In vitro, VnP-16 suppressed pSTAT3. CONCLUSIONS: VnP-16 plus celecoxib prevented SpA progression in a mouse model by regulating the Th17/Treg imbalance and suppressing the expression of proinflammatory cytokines.


Assuntos
Celecoxib/administração & dosagem , Peptídeos/administração & dosagem , Espondilartrite/tratamento farmacológico , Linfócitos T Reguladores/metabolismo , Células Th17/metabolismo , Vitronectina/química , beta-Glucanas/efeitos adversos , Animais , Celecoxib/farmacologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Integrina alfaVbeta3/metabolismo , Integrina beta1/metabolismo , Camundongos , Peptídeos/farmacologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Baço/imunologia , Espondilartrite/induzido quimicamente , Espondilartrite/genética , Espondilartrite/imunologia
12.
Antioxidants (Basel) ; 12(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36670959

RESUMO

Gardeniae Fructus (GF, the dried ripe fruits of Gardenia jasminoides Ellis) has traditionally been used to treat various diseases in East Asian countries, such as liver disease. Silymarin is a well-known medicine used to treat numerous liver diseases globally. The present study was purposed to evaluate the synergistic effects of GF and silymarin on the thioacetamide (TAA)-induced liver fibrosis of a mouse model. Mice were orally administered with distilled water, GF (100 mg/kg, GF 100), silymarin (100 mg/kg, Sily 100), and GF and silymarin mixtures (50 and 100 mg/kg, GS 50 and 100). The GS group showed remarkable amelioration of liver injury in the serum levels and histopathology by observing the inflamed cell infiltrations and decreases in necrotic bodies through the liver tissue. TAA caused liver tissue oxidation, which was evidenced by the abnormal statuses of lipid peroxidation and deteriorations in the total glutathione in the hepatic protein levels; moreover, the immunohistochemistry supported the increases in the positive signals against 4-hydroxyneal and 8-OHdG through the liver tissue. These alterations corresponded well to hepatic inflammation by an increase in F4/80 positive cells and increases in pro-inflammatory cytokines in the hepatic protein levels; however, administration with GS, especially the high dose group, not only remarkably reduced oxidative stress and DNA damage in the liver cells but also considerably diminished pro-inflammatory cytokines, which were driven by Kupffer cell activations, as compared with each of the single treatment groups. The pharmacological properties of GS prolonged liver fibrosis by the amelioration of hepatic stellate cells' (HSCs') activation that is dominantly expressed by huge extracellular matrix (ECM) molecules including α-smooth muscle actin, and collagen type1 and 3, respectively. We further figured out that GS ameliorated HSCs activated by the regulation of Sirtuin 1 (Sirt1) activities in the hepatic protein levels, and this finding excellently reenacted the transforming growth factor-ß-treated LX-2-cells-induced cell death signals depending on the Sirt1 activities. Future studies need to reveal the pharmacological roles of GS on the specific cell types during the liver fibrosis condition.

13.
Front Immunol ; 12: 736196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867956

RESUMO

The potential therapeutic effects of probiotic bacteria in rheumatoid arthritis (RA) remain controversial. Thus, this study aimed to discover potential therapeutic bacteria based on the relationship between the gut microbiome and rheumatoid factor (RF) in RA. Bacterial genomic DNA was extracted from the fecal samples of 93 RA patients and 16 healthy subjects. Microbiota profiling was conducted through 16S rRNA sequencing and bioinformatics analyses. The effects of Bifidobacterium strains on human peripheral blood mononuclear cells and collagen-induced arthritis (CIA) mice were assessed. Significant differences in gut microbiota composition were observed in patients with different RF levels. The relative abundance of Bifidobacterium and Collinsella was lower in RF-high than in RF-low and RF-negative RA patients, while the relative abundance of Clostridium of Ruminococcaceae family was higher in RF-high than in RF-low and RF-negative patients. Among 10 differentially abundant Bifidobacterium, B. longum RAPO exhibited the strongest ability to inhibit IL-17 secretion. Oral administration of B. longum RAPO in CIA mice, obese CIA, and humanized avatar model significantly reduced RA incidence, arthritis score, inflammation, bone damage, cartilage damage, Th17 cells, and inflammatory cytokine secretion. Additionally, B. longum RAPO significantly inhibited Th17 cells and Th17-related genes-IL-17A, IRF4, RORC, IL-21, and IL-23R-in the PBMCs of rheumatoid arthritis patients. Our findings suggest that B. longum RAPO may alleviate RA by inhibiting the production of IL-17 and other proinflammatory mediators. The safety and efficacy of B. longum RAPO in patients with RA and other autoimmune disorders merit further investigation.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/terapia , Bifidobacterium/imunologia , Bifidobacterium/isolamento & purificação , Microbioma Gastrointestinal/imunologia , Probióticos/uso terapêutico , Fator Reumatoide/sangue , Adulto , Animais , Artrite Experimental/imunologia , Artrite Experimental/terapia , Bifidobacterium/genética , Biodiversidade , Estudos de Casos e Controles , Feminino , Microbioma Gastrointestinal/genética , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Endogâmicos NOD , Camundongos Obesos , Camundongos SCID , Pessoa de Meia-Idade , Células Th17/imunologia
14.
Front Immunol ; 12: 696074, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956169

RESUMO

Objective: Tacrolimus (Tac) is an immunosuppressant used in the treatment of systemic lupus erythematosus (SLE); however, it induces T cell subset imbalances by reducing regulatory T (Treg) cells. Lactobacillus acidophilus (LA) is reported to have therapeutic efficacy in immune-mediated diseases via T cell regulation. Methods: This study investigated whether a combination therapy of LA and Tac improves the therapeutic efficacy of Tac by modulating T cell subset populations in an animal model of SLE. Eight-week-old MRL/lpr mice were orally administered with 5 mg/kg of Tac and/or 50 mg/kg of LA daily for 8 weeks. Cecal microbiota compositions, serum autoantibodies levels, the degree of proteinuria, histological changes in the kidney, and populations of various T cell subsets in the spleen were analyzed. Results: Mice presented with significant gut dysbiosis, which were subsequently recovered by the combination treatment of Tac and LA. Double negative T cells in the peripheral blood and spleens of MRL/lpr mice were significantly decreased by the combination therapy. The combination treatment reduced serum levels of anti-dsDNA antibodies and Immunoglobulin G2a, and renal pathology scores were also markedly alleviated. The combination therapy induced Treg cells and decreased T helper 17 (Th17) cells both in vitro and in vivo. In vitro treatment with LA induced the production of indoleamine-2,3-dioxygenase, programmed death-ligand 1, and interleukin-10 via the specific intracellular adhesion molecule-3 grabbing non-integrin homolog-related 3 receptor signals. Conclusion: The present findings indicate that LA augments the therapeutic effect of Tac and modulates Th17/Treg balance in a murine model of SLE.


Assuntos
Disbiose/terapia , Imunossupressores/efeitos adversos , Lactobacillus acidophilus , Lúpus Eritematoso Sistêmico/terapia , Probióticos , Linfócitos T Reguladores/imunologia , Tacrolimo/efeitos adversos , Células Th17/imunologia , Animais , Anticorpos Antinucleares/sangue , Ceco/microbiologia , Terapia Combinada , Modelos Animais de Doenças , Disbiose/etiologia , Microbioma Gastrointestinal , Imunoglobulina G/sangue , Rim/patologia , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/microbiologia , Camundongos , Camundongos Endogâmicos MRL lpr , Organismos Livres de Patógenos Específicos , Baço/imunologia , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico
15.
Front Immunol ; 12: 721453, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539657

RESUMO

Previous studies have evaluated the roles of T and B cells in the pathogenesis of Sjögren's syndrome (SS); however, their relationships with age-dependent and metabolic abnormalities remain unclear. We examined the impacts of changes associated with aging or metabolic abnormalities on populations of T and B cells and SS disease severity. We detected increased populations of IL-17-producing T and B cells, which regulate inflammation, in the salivary glands of NOD/ShiLtJ mice. Inflammation-induced human submandibular gland cell death, determined based on p-MLKL and RIPK3 expression levels, was significantly increased by IL-17 treatment. Among IL-17-expressing cells in the salivary gland, peripheral blood, and spleen, the α4ß7 (gut-homing integrin)-negative population was significantly increased in aged NOD/ShiLtJ mice. The α4ß7-positive population markedly increased in the intestines of aged NOD/ShiLtJ mice following retinoic acid (RA) treatment. A significant increase in α4ß7-negative IL-17-expressing cells in salivary glands may be involved in the onset and progression of SS. These results suggest the potential therapeutic utility of RA in SS treatment.


Assuntos
Interleucina-17/metabolismo , Receptores CCR/metabolismo , Receptores de Retorno de Linfócitos/metabolismo , Síndrome de Sjogren/etiologia , Síndrome de Sjogren/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Animais , Biomarcadores , Glicemia , Morte Celular , Autorrenovação Celular , Modelos Animais de Doenças , Suscetibilidade a Doenças , Interleucina-17/sangue , Camundongos , Glândulas Salivares/imunologia , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Síndrome de Sjogren/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo
16.
Biofabrication ; 13(4)2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34479224

RESUMO

The properties of a semipermeable porous membrane, including pore size, pore density, and thickness, play a crucial role in creating a tissue interface in a microphysiological system (MPS) because it dictates multicellular interactions between different compartments. The small pore-sized membrane has been preferentially used in an MPS for stable cell adhesion and the formation of tissue barriers on the membrane. However, it limited the applicability of the MPS because of the hindered cell transmigration via sparse through-holes and the optical translucence caused by light scattering through pores. Thus, there remain unmet challenges to construct a compartmentalized MPS without those drawbacks. Here we report a submicrometer-thickness (∼500 nm) fibrous extracellular matrix (ECM) film selectively condensed on a large pore-sized track-etched (TE) membrane (10µm-pores) in an MPS device, which enables the generation of functional tissue barriers simultaneously achieving optical transparency, intercellular interactions, and transmigration of cells across the membrane. The condensed ECM fibers uniformly covering the surface and 10µm-pores of the TE membrane permitted sufficient surface areas where a monolayer of the human induced pluripotent stem cell-derived brain endothelial cells is formed in the MPS device. The functional maturation of the blood-brain barrier (BBB) was proficiently achieved due to astrocytic endfeet sheathing the brain endothelial cells through 10µm pores of the condensed-ECM-coated TE (cECMTE) membrane. We also demonstrated the extravasation of human metastatic breast tumor cells through the human BBB on the cECMTE membrane. Thus, the cECMTE membrane integrated with an MPS can be used as a versatile platform for studying various intercellular communications and migration, mimicking the physiological barriers of an organ compartment.


Assuntos
Comunicação Celular , Células Endoteliais , Matriz Extracelular , Humanos , Células-Tronco Pluripotentes Induzidas , Tomografia por Emissão de Pósitrons
17.
Nutrients ; 13(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34371973

RESUMO

We conducted a meta-analysis exploring the effect of a low fermentable oligo-, di-, monosaccharides, and polyols diet (LFD) on the overall symptoms, quality of life, and stool habits of irritable bowel syndrome (IBS) patients. The meta-analysis was performed using a random-effects method. The effect size was presented as weighted standardized mean difference (SMD) and 95% confidence interval (CI). Subgroup analyses were conducted to determine the potential effects of covariates on the outcome. Twenty-two papers were included. The LFD group showed a moderate reduction in symptom severity and a slight improvement in quality of life compared to the control group (SMD, -0.53 and 0.24; 95% CI, -0.68, -0.38 and 0.02, 0.47, respectively). IBS symptom improvement was consistent between subgroups stratified according to proportions of female patients, study durations, IBS subtypes, assessment methods, and control interventions. Three studies regarding stool habits change in IBS-D patients showed a significant decrease in stool frequency (mean differences [MD], -5.56/week; 95% CI, -7.40, -3.72) and a significant improvement in stool consistency (MD, -0.86; 95% CI, -1.52, -0.19) in the LFD group compared to the control group. This is the most updated meta-analysis including studies that adopted diverse control interventions such as dietary interventions, supplementation, habitual diets, and lifestyle changes.


Assuntos
Dieta com Restrição de Carboidratos , Fermentação , Síndrome do Intestino Irritável/dietoterapia , Dietoterapia/métodos , Suplementos Nutricionais , Dissacarídeos , Humanos , Síndrome do Intestino Irritável/fisiopatologia , Monossacarídeos , Oligossacarídeos , Polímeros , Comportamento de Redução do Risco , Índice de Gravidade de Doença , Resultado do Tratamento
18.
Front Immunol ; 12: 652709, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211461

RESUMO

Small heterodimer partner interacting leucine zipper protein (SMILE) is an orphan nuclear receptor and a member of the bZIP family of proteins. We investigated the mechanism by which SMILE suppressed the development of inflammatory bowel disease (IBD) using a DSS-induced colitis mouse model and peripheral blood mononuclear cells (PBMCs) from patients with ulcerative colitis (UC). Metformin, an antidiabetic drug and an inducer of AMPK, upregulated the level of SMILE in human intestinal epithelial cells and the number of SMILE-expressing cells in colon tissues from DSS-induced colitis mice compared to control mice. Overexpression of SMILE using a DNA vector reduced the severity of DSS-induced colitis and colitis-associated intestinal fibrosis compared to mock vector. Furthermore, SMILE transgenic mice showed ameliorated DSS-induced colitis compared with wild-type mice. The mRNA levels of SMILE and Foxp3 were downregulated and SMILE expression was positively correlated with Foxp3 in PBMCs from patients with UC and an inflamed mucosa. Metformin increased the levels of SMILE, AMPK, and Foxp3 but decreased the number of interleukin (IL)-17-producing T cells among PBMCs from patients with UC. These data suggest that SMILE exerts a therapeutic effect on IBD by modulating IL-17 production.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Doenças Inflamatórias Intestinais/etiologia , Doenças Inflamatórias Intestinais/metabolismo , Zíper de Leucina/genética , Metformina/farmacologia , Multimerização Proteica/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Transgênicos , Ligação Proteica
19.
Sci Rep ; 11(1): 11756, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083690

RESUMO

It is known that one of the main concerns associated with the conventional welding of precipitation-strengthened Al alloys is the formation of softening regions, resulting in the deterioration of mechanical properties. In this study, we show that linear friction welding (LFW) can completely suppress softening regions in precipitation-strengthened AA6061-T6 alloy by introducing a large shear strain and by controlling the interfacial temperature. We found that the LFW process resulted in an extremely low interfacial temperature; it decreased as the applied pressure increased from 50 to 240 MPa. This approach can essentially suppress both softening and hardening regions, leading to uniform hardness distribution in Al joints. The high-pressure LFW process demonstrated here can thus provide an innovated guidance to obtain high-performance Al alloy joints and be extended to other precipitation-strengthened Al alloys, which undergo high-temperature softening.

20.
Cells ; 10(3)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808727

RESUMO

Osteoarthritis (OA) is the most common degenerative arthritis associated with pain and cartilage destruction in the elderly; it is known to be involved in inflammation as well. A drug called celecoxib is commonly used in patients with osteoarthritis to control pain. Metformin is used to treat type 2 diabetes but also exhibits regulation of the autophagy pathway. The purpose of this study is to investigate whether metformin can treat monosodium iodoacetate (MIA)-induced OA in rats. Metformin was administered orally every day to rats with OA. Paw-withdrawal latency and threshold were used to assess pain severity. Cartilage damage and pain mediators in dorsal root ganglia were evaluated by histological analysis and a scoring system. Relative mRNA expression was measured by real-time PCR. Metformin reduced the progression of experimental OA and showed both antinociceptive properties and cartilage protection. The combined administration of metformin and celecoxib controlled cartilage damage more effectively than metformin alone. In chondrocytes from OA patients, metformin reduced catabolic factor gene expression and inflammatory cell death factor expression, increased LC3Ⅱb, p62, and LAMP1 expression, and induced an autophagy-lysosome fusion phenotype. We investigated if metformin treatment reduces cartilage damage and inflammatory cell death of chondrocytes. The results suggest the potential for the therapeutic use of metformin in OA patients based on its ability to suppress pain and protect cartilage.


Assuntos
Artrite Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Lisossomos/efeitos dos fármacos , Metformina/farmacologia , Dor/tratamento farmacológico , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/metabolismo , Celecoxib/farmacologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Iodoacetatos/metabolismo , Lisossomos/metabolismo , Osteoartrite/metabolismo , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...